40 Modulus Road Ormonde, 2091 T: +27 11 661 7900 F: +27 11 496 2238

E: joanne.barton@za.bureauveritas.com

W: www.bureauveritas.com



Ref. No: ML-2022-06248

Issued at: Johannesburg

Date

: 26/07/2022

Page

: 1 of 17

# Certificate/Report

RESULTS REPORTED RELATED ONLY TO ITEMS TESTED

**COMPANY NAME** 

: NANOCARE SA

**ADDRESS** 

: 3 HESKETH ROAD, WESTMEAD, PINETOWN, 3610

**SUBJECT** 

: OUANTITATIVE SUSPENSION TEST FOR THE EVALUATION OF

BACTERICIDAL ACTIVITY OF CHEMICAL DISINFECTANTS AND

ANTISEPTICS USED IN FOOD, INDUSTRIAL, DOMESTIC AND

INSTITUTIONAL AREAS SANS 51276:2021 (EN1276:2019): DILUTION-

NEUTRALIZATION METHOD

MARKED

: NANOCARE/NANOPURE EXP 01/05/2025

**BATCH** 

**ACTIVE INGREDIENT** 

: 51% NaDCC, 0.016% NANOSILVER

DILUENT RECOMMENDED

: POTABLE WATER

**APPEARANCE** 

: WHITE TABLETS

**DILUENT USED** 

: STANDARDIZED HARD WATER

CONCENTRATIONS TESTED : 25PPM, 250PPM, 500PPM

APPEARANCE OF DILUTIONS: COLOURLESS, HOMOGENOUS, NO PRECIPITATE OBSERVED

NEUTRALIZING AGENT

: NEUTRALIZING FLUID

**SOILING CONDITIONS** 

: DIRTY CONDITIONS

STORAGE CONDITIONS

: STORE IN A COOL DRY PLACE, AWAY FROM FOODSTUFFS

**INSTRUCTED BY** 

: SHAUN

LAB NO.

: 949027

RECEIVED ON

: 28/06/2022

DATE ANALYSED

: 29/06/2022

# **EXPERIMENTAL CONDITIONS:**

Obligatory conditions

test organisms:

Enterococcus hirae ATCC 10541

Escherichia coli ATCC 10536

Pseudomonas aeruginosa ATCC 15442

Staphylococcus aureus ATCC 6538

Test temperature:

20°C

Contact time:

5 minutes

Interfering substance:

3g/l Bovine serum albumin (Dirty conditions)

Test incubation temperature:

37°C

All services are rendered in accordance with Bureau Veritas M&L Laboratory Services (Pty) Ltd General Terms and conditions of Business, which has been supplied to you, this certificate cannot be reproduced except in full without the written consent of M and L Laboratory Services

Ref. No: ML-2022-06248 Issued at: Johannesburg

: 26/07/2022 Date

RESULTS REPORTED RELATED ONLY TO ITEMS TESTED

Certificate/Report

Page : 2 of 17

P O Box 82124 Southdale, 2135 40 Modulus Road Ormonde, 2091 T: +27 11 661 7900 F: +27 11 496 2238

E: joanne.barton@za.bureauveritas.com

M and L Laboratory Services (Pty) Ltd Reg No. 1974/001476/07 VAT No. 478013505

W: www.bureauveritas.com

### PASS REQUIREMENTS:

The product shall demonstrate at least a 5 decimal log reduction when diluted with hard water/or undiluted and tested under obligatory test conditions. At least one of the test concentrations will demonstrate a log reduction of less than 5 log.

### **TEST VALIDITY**

For each test organism:

- N is between  $1.5 \times 10^8$  and  $5.0 \times 10^8$  (8.17  $\leq \log N \leq 8.70$ )
- $N_0$  is between 1.5x10<sup>7</sup> and 5.0x10<sup>7</sup> (7.17 $\le$ log N $\le$ 7.70)
- $N_{V0}$  is between 30 and 160 (3.0x10<sup>1</sup> and 1.6x10<sup>2</sup>)
- A, B, C are equal to or greater than 0.5xN<sub>vo</sub>
- Control of weighted mean counts: quotient is not lower than 5 and not higher than 15

## **RESULTS:**

### Escherichia coli ATCC 10536

Table 1: Nand No values

| Dilution          | Vc1            | Vc2              | Average<br>N(wm)     | Log N | N <sub>0</sub> (N/10) | Log No |
|-------------------|----------------|------------------|----------------------|-------|-----------------------|--------|
| 10-6              | 241            | 231              | 0.0-108              | 0.44  | 0.0.107               | 7.44   |
| 10-7              | 35             | 29               | $-2.8 \times 10^{8}$ | 8.44  | 2.8x10 <sup>7</sup>   | 7.44   |
| Is Log N between  | een 8.17 and 8 | 3.70: <b>Yes</b> |                      |       |                       |        |
| Is Log No between | en 7.17and 7   | .70: Yes         |                      |       | i                     |        |
| Control of weight | ghted mean co  | ounts: 7.38      |                      |       |                       |        |

Table 2: Test Log Reduction Values

| Product<br>Concentration | Vc1  | Vc2  | Na (Ave<br>Vc1&Vc2x10) | Log Na | Log Reduction<br>(No: 7.44) |
|--------------------------|------|------|------------------------|--------|-----------------------------|
| 25ppm                    | >330 | >330 | >3300                  | >3.52  | <3.92                       |
| 250ppm                   | <14  | <14  | <140                   | <2.15  | >5.29                       |
| 500ppm                   | <14  | <14  | <140                   | <2.15  | >5.29                       |

### Pseudomonas aeruginosa ATCC 15442

Table 3: Nand No values

| Dilution        | Vc1 Vc2 Average N(wm) |                    | THE RESIDENCE OF THE PARTY OF T | Log N | No<br>(N/10)        | Log No |
|-----------------|-----------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------|--------|
| 10-6            | 309                   | 296                | 2.7-108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.57  | 0.7107              | 7.57   |
| 10-7            | 42                    | 45                 | $-3.7x10^8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.37  | 3.7x10 <sup>7</sup> | 7.57   |
| Is Log Nbetwe   | en 8.17 and 8         | .70: Yes           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                     |        |
| Is Log No betwo | een 7.17and 7         | 7.70: <b>Yes</b>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                     | -1     |
| Control of wei  | ghted mean co         | ounts: <b>6.95</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                     |        |



P O Box 82124 Southdale, 2135 40 Modulus Road

Ormonde, 2091 T: +27 11 661 7900 F: +27 11 496 2238

E: joanne.barton@za.bureauveritas.com

W: www.bureauveritas.com



Ref. No: ML-2022-06248

Issued at: Johannesburg

Date : 26/07/2022

Page : 3 of 17

# Certificate/Report

RESULTS REPORTED RELATED ONLY TO ITEMS TESTED

Table 4: Test Log Reduction Values

| Product<br>Concentration | Vc1  | Vc2  | Na (Ave<br>Vc1&Vc2x10) | Log Na | Log Reduction (No:7.57) |
|--------------------------|------|------|------------------------|--------|-------------------------|
| 25ppm                    | >330 | >330 | >3300                  | >3.52  | <4.05                   |
| 250ppm                   | <14  | <14  | <140                   | <2.15  | >5.42                   |
| 500ppm                   | <14  | <14  | <140                   | <2.15  | >5.42                   |

## Staphylococcus aureus ATCC 6538

## Table 5: Nand No values

| Dilution         | Vc1            | Vc2            | Average<br>N(wm)      | Log N  | N <sub>0</sub> (N/10) | Log No |
|------------------|----------------|----------------|-----------------------|--------|-----------------------|--------|
| 10-6             | 255            | 264            | 2.0108                | 0.40   | 0.0-107               | 7.40   |
| 10-7             | 24             | 29             | - 2.6x10 <sup>8</sup> | 8.42   | 2.6x10 <sup>7</sup>   | 7.42   |
| Is Log Nbetwee   | en 8.17 and 8. | 70: <b>Yes</b> |                       | 27 100 | -                     |        |
| Is Log No betwe  | en 7.17and 7.  | 70: <b>Yes</b> |                       |        |                       | ***    |
| Control of weigh | shted mean co  | unts: 9.79     |                       |        |                       |        |

# Table 6: Test Log Reduction Values

| Product<br>Concentration | Vc1  | Vc2  | Na (Ave<br>Vc1&Vc2x10) | Log Na | Log Reduction (No:7.42) |
|--------------------------|------|------|------------------------|--------|-------------------------|
| 25ppm                    | >330 | >330 | >3300                  | >3.52  | <3.90                   |
| 250ppm                   | <14  | <14  | <140                   | <2.15  | >5.27                   |
| 500ppm                   | <14  | <14  | <140                   | <2.15  | >5.27                   |

## Enterococcus hirae ATCC 10541

# Table 7: Nand No values

| Dilution          | Vc1            | Vc2            | Average<br>N(wm)     | Log N | N <sub>0</sub> (N/10) | Log No |  |
|-------------------|----------------|----------------|----------------------|-------|-----------------------|--------|--|
| 10-6              | 166            | 174            | 0.0-10%              | 0.00  | 0.0.107               | T 02   |  |
| 10-7              | 25             | 21             | $-2.0 \times 10^{8}$ | 8.30  | 2.0x10 <sup>7</sup>   | 7.30   |  |
| Is Log Nbetwee    | en 8.17 and 8. | 70: <b>Yes</b> |                      |       |                       |        |  |
| Is Log No between | en 7.17and 7.  | 70: <b>Yes</b> |                      |       |                       |        |  |
| Control of weig   | ghted mean co  | ants: 7.39     |                      |       |                       |        |  |

# Table 8: Test Log Reduction Values

| Product<br>Concentration | Vc1  | Vc2  | Na (Ave<br>Vc1&Vc2x10) | Log Na | Log Reduction (No:7.30) |
|--------------------------|------|------|------------------------|--------|-------------------------|
| 25ppm                    | >330 | >330 | >3300                  | >3.52  | <3.78                   |
| 250ppm                   | <14  | <14  | <140                   | <2.15  | >5.15                   |
| 500ppm                   | <14  | <14  | <140                   | <2.15  | >5.15                   |



Southdale 2135 40 Modulus Road Ormonde, 2091 T: +27 11 661 7900 F: +27 11 496 2238

E: joanne.barton@za.bureauveritas.com

W: www.bureauveritas.com



Certificate/Report RESULTS REPORTED RELATED ONLY TO ITEMS TESTED Ref. No: ML-2022-06248

Issued at: Johannesburg

: 26/07/2022

Page : 4 of 17

### **VALIDATIONS AND CONTROLS**

Table 9: Enterococcus hirae ATCC 10541

| Valida  | Validation suspension |         |         | Experimental Conditions Control A |     |     | alizer Co | ntrol B | Method Validation C |    |     |
|---------|-----------------------|---------|---------|-----------------------------------|-----|-----|-----------|---------|---------------------|----|-----|
|         |                       | Ave     |         |                                   | Ave |     | 0         | Ave     |                     |    | Ave |
| Vc1     | 85                    | 00      | Vc1     | 81                                | 80  | Vc1 | 74        | 75.5    | Vc1                 | 66 | 70  |
| Vc2     | 91                    | - 88    | Vc2     | 79                                | 80  | Vc2 | 77        | 75.5    | Vc2                 | 74 | 70  |
| 0.5x88  | =44                   |         |         |                                   |     |     |           |         |                     |    |     |
| s the N | vo value              | between | 30-160: | YES                               |     |     |           |         |                     |    |     |

Is the Experimental Condition A≥0.5xNvo value: YES

Is the Neutralizer Condition B≥0.5xNvo value: YES

Is the Method Validation C≥0.5xNvo value: YES

Table 10: Escherichia coli ATCC 10536

| Valida   | ition susp | ension    | Experimental Conditions Control A |          |                  | Neutr | alizer Co | ntrol B           | Method Validation |    |     |
|----------|------------|-----------|-----------------------------------|----------|------------------|-------|-----------|-------------------|-------------------|----|-----|
|          |            | Ave       |                                   |          | Ave              |       |           | Ave               |                   |    | Ave |
| Vc1      | 104        | 108       | Vc1                               | 92       | 95               | Vc1   | 94        | 100               | Vc1               | 88 | 0.4 |
| Vc2      | 112        | 100       | Vc2                               | 98       | 95               | Vc2   | 106       | 100               | Vc2               | 80 | 84  |
| 0.5x10   | 8=54       |           |                                   |          |                  |       |           | Park time Francis | RECORDS           |    |     |
| Is the N | vo value   | between   | 30-160:                           | YES      |                  |       |           |                   |                   |    |     |
| Is the E | xperimen   | ital Cond | ition A≥0                         | .5xNvo   | value: <b>YE</b> | S     |           |                   |                   |    |     |
| Is the N | eutralize  | r Conditi | on B≥0.5                          | xNvo va  | lue: YES         |       |           |                   |                   |    |     |
| Is the A | 1ethod Va  | alidation | C>0.5xN                           | vo value | · VES            |       |           |                   |                   |    |     |

Table 11: Pseudomonas aeruginosa ATCC 15442

| Valida | tion susp | ension |     | perimen<br>tions Cor |     | Neutra | alizer Co | ntrol B | Metho | d Valida | tion C |
|--------|-----------|--------|-----|----------------------|-----|--------|-----------|---------|-------|----------|--------|
|        |           | Ave    |     |                      | Ave |        |           | Ave     |       |          | Ave    |
| Vc1    | 96        | 00     | Vc1 | 80                   | 9.4 | Vc1    | 84        | 00      | Vc1   | 69       | 7.1    |
| Vc2    | 102       | 99     | Vc2 | 88                   | 84  | Vc2    | 96        | 90      | Vc2   | 73       | /1     |

0.5x99=49.5

Is the Nvo value between 30-160: YES

Is the Experimental Condition A≥0.5xNvo value: YES

Is the Neutralizer Condition B≥0.5xNvo value: YES

Is the Method Validation C≥0.5xNvo value: YES





M and L Laboratory Services (Pty) Ltd Reg No. 1974/001476/07 VAT No. 478013505 P O Box 82124 Southdale, 2135 40 Modulus Road

40 Modulus Road Ormonde, 2091 T: +27 11 661 7900 F: +27 11 496 2238

E: joanne.barton@za.bureauveritas.com

W: www.bureauveritas.com



Ref. No: ML-2022-06248

Issued at: Johannesburg

Date : 26/07/2022

Page : 5 of 17

# Certificate/Report

RESULTS REPORTED RELATED ONLY TO ITEMS TESTED

Table 12: Staphylococcus aureus ATCC 6538

| Valida    | tion susp | ension     |           | perimentions Con |            | Neutr | alizer Co | ntrol B | Method Validation |    |      |
|-----------|-----------|------------|-----------|------------------|------------|-------|-----------|---------|-------------------|----|------|
|           |           | Ave        |           |                  | Ave        |       |           | Ave     |                   |    | Ave  |
| Vc1       | 112       | 100        | Vc1       | 98               | 0.0        | Vc1   | 99        | 101     | Vc1               | 64 | CCE  |
| Vc2       | 106       | 109        | Vc2       | 94               | 96         | Vc2   | 103       | 101     | Vc2               | 69 | 66.5 |
| 0.5x10    | 9=54.5    |            | F         |                  |            |       | 0         |         |                   |    |      |
| Is the N  | vo value  | between    | 30-160:   | YES              |            |       |           |         |                   |    |      |
| Is the Ex | xperimen  | tal Condi  | ition A≥0 | .5xNvo v         | value: YES | 3     |           |         |                   |    |      |
| Is the N  | eutralize | r Conditio | on B≥0.5  | xNvo val         | ue: YES    |       |           |         |                   |    |      |
| Is the N  | lethod Va | lidation   | C≥0.5xN   | vo value:        | YES        |       |           |         |                   |    |      |

### Conclusion

- The product tested at a dilution of **250ppm complied** with the criteria indicated under the "Pass Requirements" of SANS 51276:2021 (EN 1276:2019) standard (obligatory dirty conditions) which requires at least a 99.999% kill (5 log reduction).
- The mean reduction of six replicates with the limiting test organism *Staphylococcus aureus* was 3.1 x 10<sup>5</sup>. *Pseudomonas aeruginosa, Enterococcus hirae* and *Escherichia coli* were tested once and showed a 5 log reduction or more at a lower concentration than *Staphylococcus aureus*.

TECHNICAL SIGNATORY

M and L Laboratory Services (Pty) Ltd Reg No. 1974/001476/07 VAT No. 478013505 P O Box 82124 Southdale 2135 40 Modulus Road

Ormonde, 2091 T: +27 11 661 7900 F: +27 11 496 2238

E: joanne.barton@za.bureauveritas.com

W: www.bureauveritas.com



Issued at: Johannesburg

Ref. No: ML-2022-06248

Date : 26/07/2022

Page : 6 of 17

# Certificate/Report

RESULTS REPORTED RELATED ONLY TO ITEMS TESTED

**COMPANY NAME** 

: NANOCARE SA

**ADDRESS** 

: 3 HESKETH ROAD, WESTMEAD, PINETOWN, 3610

**SUBJECT** 

: QUANTITATIVE SUSPENSION TEST FOR THE EVALUATION OF

FUNGICIDAL ACTIVITY OF CHEMICAL DISINFECTANTS

AND ANTISEPTICS USED IN FOOD, INDUSTRIAL, DOMESTIC AND INSTITUTIONAL AREAS SANS 51650:2011 (EN1650:2008): DILUTION-

NEUTRALIZATION METHOD

MARKED

: NANOCARE/NANOPURE EXP 01/05/2025

BATCH

: 18901

ACTIVE INGREDIENT

: 51% NaDCC, 0.016% NANOSILVER

**DILUENT USED** 

: STANDARDIZED HARD WATER

**APPEARANCE** 

: WHITE TABLETS

DILUENT RECOMMENDED

: POTABLE WATER

CONCENTRATIONS TESTED : 25PPM, 250PPM & 500PPM

STORAGE CONDITIONS

: KEEP IN A DRY PLACE AWAY FROM FOODSTUFFS

APPEARANCE OF MIXTURE : COLOURLESS, HOMOGENOUS, NO PRECIPITATE OBSERVED

**SOILING CONDITIONS** 

: PRODUCT NOT TESTED ON SOILED CONDITIONS

**NEUTRALIZING AGENT** 

: NEUTRALIZING FLUID

**INSTRUCTED BY** 

LAB NO.

: SHAUN : 949027

RECEIVED ON

: 28/06/2022

DATE ANALYSED

: 29/06/2022

**EXPERIMENTAL CONDITIONS:** 

Obligatory conditions

test organisms:

Candida albicans ATCC 10231

Aspergillus brasiliensis ATCC 16404

Test temperature:

20°C

Contact time:

15 minutes

Interfering substance:

0.3g/l Bovine serum albumin (Clean conditions)

Test incubation temperature:

30°C

## PASS REQUIREMENTS:

The product shall demonstrate at least a 4 decimal log reduction when diluted with hard water/or undiluted and tested under obligatory test conditions. At least one of the test concentrations will demonstrate a log reduction of less than 4 log.



Southdale, 2135 40 Modulus Road Ormonde, 2091 T: +27 11 661 7900 F: +27 11 496 2238

E: joanne.barton@za.bureauveritas.com

W: www.bureauveritas.com



Issued at: Johannesburg

Ref. No: ML-2022-06248

: 26/07/2022

Page : 7 of 17

Date

# Certificate/Report

RESULTS REPORTED RELATED ONLY TO ITEMS TESTED

### TEST VALIDITY

For each test organism:

- *N* is between  $1.5 \times 10^7$  and  $5.0 \times 10^7$  ( $7.17 \le \log N \le 7.70$ )
- $N_0$  is between 1.5x10<sup>6</sup> and 5.0x10<sup>6</sup> (6.17 $\le$ log N $\le$ 6.70)
- $N_{VO}$  is between 30 and 160 (3.0x10<sup>1</sup> and 1.6x10<sup>2</sup>)
- A, B, C are equal to or greater than 0.5xNvo
- Control of weighted mean counts: quotient is not lower than 5 and not higher than 15

### **RESULTS:**

## Candida albicans ATCC 10231

Table 13: Nand No values

| Dilution         | Vc1           | Vc2              | Average<br>N(wm)   | Log N | N <sub>0</sub> (N/10) | Log No |
|------------------|---------------|------------------|--------------------|-------|-----------------------|--------|
| 10-5             | 226           | 232              | 0.4-107            | 7.00  | 2.4-126               | 0.00   |
| 10-6             | 24            | 26               | $-2.4 \times 10^7$ | 7.38  | $2.4 \times 10^{6}$   | 6.38   |
| Is Log N between | een 7.17 and  | 7.70: <b>Yes</b> |                    |       |                       |        |
| Is Log No betwe  | een 6.17and 6 | 5.70: <b>Yes</b> |                    |       | 1517                  |        |
| Control of wei   | ghted mean co | ounts: 9.16      |                    |       |                       |        |

Table 14: Test Log Reduction Values

| Product<br>Concentration | Vc1  | Vc2  | Na (Ave<br>Vc1&Vc2x10) | Log Na | Log Reduction (No: 6.38) |
|--------------------------|------|------|------------------------|--------|--------------------------|
| 25ppm                    | >330 | >330 | >3300                  | >3.52  | <2.86                    |
| 250ppm                   | <14  | <14  | <140                   | <2.15  | >4.23                    |
| 500ppm                   | <14  | <14  | <140                   | <2.15  | >4.23                    |

## Aspergillus brasiliensis ATCC 16404

Table 15: Nand No values

| Dilution        | Vc1           | Vc2              | Average<br>N(wm)      | Log N | N <sub>0</sub> (N/10) | Log No |
|-----------------|---------------|------------------|-----------------------|-------|-----------------------|--------|
| 10-5            | 144           | 139              | 2 Ov 1 O7             | 7.30  | 2.0-106               | 0.20   |
| 10-6            | 24            | 29               | - 2.0x10 <sup>7</sup> | 7.30  | 2.0x10 <sup>6</sup>   | 6.30   |
| Is Log Nbetwe   | en 7.17 and 7 | .70: Yes         |                       |       |                       |        |
| Is Log No betwe | een 6.17and 6 | 6.70: <b>Yes</b> | 200                   |       |                       |        |
| Control of wei  | ghted mean co | ounts: 5.34      |                       |       |                       |        |

TECHNICAL SIGNATORY

·····

M and L Laboratory Services (Pty) Ltd Reg No. 1974/001476/07 VAT No. 478013505

P O Box 82124 Southdale, 2135 40 Modulus Road Ormonde, 2091

Ormonde, 2091 T: +27 11 661 7900 F: +27 11 496 2238

E: joanne.barton@za.bureauveritas.com

W: www.bureauveritas.com



Issued at : Johannesburg

Ref. No: ML-2022-06248

Date

: 26/07/2022

Page

:8 of 17

# Certificate/Report

RESULTS REPORTED RELATED ONLY TO ITEMS TESTED

Table 16: Test Log Reduction Values

| Product<br>Concentration | Vc1  | Vc2  | Na (Ave<br>Vc1&Vc2x10) | Log Na | Log Reduction (No: 6.30) |
|--------------------------|------|------|------------------------|--------|--------------------------|
| 25ppm                    | >165 | >165 | >1650                  | >3.22  | <3.08                    |
| 250ppm                   | 19   | 16   | 175                    | 2.24   | 4.06                     |
| 500ppm                   | <14  | <14  | <140                   | <2.15  | >4.15                    |

### **VALIDATIONS AND CONTROLS**

Table 17: Candida albicans ATCC 10231

| Valida    | tion susp | pension    |           | perimentions Co |            | Neutra          | alizer Co | ntrol B | Metho | od Valida | ation C   |
|-----------|-----------|------------|-----------|-----------------|------------|-----------------|-----------|---------|-------|-----------|-----------|
|           |           | Ave        |           |                 | Ave        |                 |           | Ave     |       |           | Ave       |
| Vc1       | 78        | 00         | Vc1       | 70              | COF        | Vc1             | 64        | CCE     | Vc1   | 64        | 62.5      |
| Vc2       | 86        | 82         | Vc2       | 67              | 68.5       | Vc2             | 69        | 66.5    | Vc2   | 61        | 62.3      |
| 0.5x82    | =41       |            |           |                 |            |                 |           |         |       |           |           |
| Is the N  | vo value  | between    | 30-160:   | YES             |            | 11-0-1-100 Tar2 | 300       |         |       |           | 1100/1902 |
| Is the Ex | kperimer  | ntal Condi | ition A≥0 | .5xNvo v        | value: YES | 3               |           |         |       |           |           |
| Is the N  | eutralize | r Conditi  | on B≥0.5  | xNvo val        | lue: YES   |                 |           |         |       |           |           |
| Is the N  | lethod Va | alidation  | C≥0.5xN   | vo value:       | YES        |                 |           |         |       |           |           |

Table 18: Aspergillus brasiliensis ATCC 16404

| Valida    | tion susp | ension      |           | tions Co  |            | Neutra | alizer Co | ntrol B | Metho | od Valida | ation C |
|-----------|-----------|-------------|-----------|-----------|------------|--------|-----------|---------|-------|-----------|---------|
|           |           | Ave         |           |           | Ave        |        |           | Ave     |       |           | Ave     |
| Vc1       | 69        | CC          | Vc1       | 55        | 56         | Vc1    | 61        | - 63    | Vc1   | 54        | 56.5    |
| Vc2       | 63        | - 66        | Vc2       | 57        | 36         | Vc2    | 65        | 03      | Vc2   | 59        | 36.5    |
| 0.5x66    | =33       |             |           |           |            |        |           |         |       |           |         |
| Is the N  | vo value  | between     | 30-160:   | YES       |            |        |           |         |       |           |         |
| Is the Ex | xperimen  | ıtal Condi  | ition A≥0 | .5xNvo v  | value: YES | 3      |           |         |       |           |         |
| Is the N  | eutralize | r Conditio  | on B≥0.5  | xNvo val  | ue: YES    |        |           |         |       |           | 0 8000  |
| Is the M  | lethod Va | alidation ( | C≥0.5xN   | vo value: | YES        |        |           |         |       |           |         |
|           |           |             |           |           |            |        |           |         |       |           |         |

## Conclusion

- The product tested at a dilution of 250ppm complied with the criteria indicated under the "Pass Requirements" of SANS 51650:2011 (EN1650:2008) standard (obligatory conditions) which requires at least a 99.99% kill (4 log reduction).
- The mean reduction of six replicates with the limiting test organism *Aspergillus brasiliensis* was 1.2 x 10<sup>4</sup>. *Candida albicans* was tested once and showed a 4 log reduction at a lower concentration than *Aspergillus brasiliensis*.



Southdale 2135 40 Modulus Road Ormonde, 2091 T: +27 11 661 7900 F: +27 11 496 2238

E: joanne.barton@za.bureauveritas.com

W: www.bureauveritas.com



Ref. No: ML-2022-06248

Issued at: Johannesburg

: 26/07/2022

Page :9 of 17

# Certificate/Report

RESULTS REPORTED RELATED ONLY TO ITEMS TESTED

**COMPANY NAME** 

: NANOCARE SA

**ADDRESS** 

: 3 HESKETH ROAD, WESTMEAD, PINETOWN, 3610

**SUBJECT** 

: OUANTITATIVE SUSPENSION TEST FOR THE EVALUATION OF

SPORICIDAL ACTIVITY OF CHEMICAL DISINFECTANTS USED IN FOOD, INDUSTRIAL, DOMESTIC AND INSTITUTIONAL AREAS SANS 53704:2006 (EN13704:2002): DILUTION- NEUTRALIZATION METHOD

MARKED

: NANOCARE/NANOPURE EXP 01/05/2025

BATCH

: 18901

ACTIVE INGREDIENT

: 51% NaDCC, 0.016% NANOSILVER

DILUENT RECOMMENDED

: POTABLE WATER

**CONCENTRATIONS TESTED** 

: 25PPM, 250PPM & 500PPM

APPEARANCE

: WHITE TABLETS

DILUENT USED

: STANDARDIZED HARD WATER

APPEARANCE OF MIXTURE : COLOURLESS, HOMOGENOUS, NO PRECIPITATE OBSERVED

: STORE IN A COOL DRY PLACE, AWAY FROM FOODSTUFFS

STORAGE CONDITIONS

: PRODUCT NOT TESTED ON SOILED CONDITIONS

**SOILING CONDITIONS** 

: MICROBIOLOGICS

**NEUTRALIZING AGENT** 

: NEUTRALIZING FLUID

INSTRUCTED BY

SPORE ORIGIN

: SHAUN

LAB NO.

: 949027

RECEIVED ON

: 28/06/2022

DATE ANALYSED

: 29/06/2022

### **EXPERIMENTAL CONDITIONS:**

Obligatory conditions

test organisms:

Bacillus subtilis ATCC 6633

Test temperature:

20°C

Contact time:

60 minutes

Interfering substance:

0.3g/l Bovine serum albumin (Clean conditions)

Test incubation temperature:

30°C

### PASS REQUIREMENTS:

The product shall demonstrate at least a 3 decimal log reduction when diluted with hard water/or undiluted and tested under obligatory test conditions. At least one of the test concentrations will demonstrate a log reduction of less than 3 log.



Southdale, 2135 40 Modulus Road Ormonde, 2091 T: +27 11 661 7900 F: +27 11 496 2238

E: joanne.barton@za.bureauveritas.com

W: www.bureauveritas.com



Issued at: Johannesburg

Ref. No: ML-2022-06248

Date : 26/07/2022

Page : 10 of 17

# Certificate/Report

| Dilution          | Vc1           | Vc2         | Average<br>N(wm)   | Log N | N <sub>0</sub> (N/10) | Log No |
|-------------------|---------------|-------------|--------------------|-------|-----------------------|--------|
| 10-4              | 210           | 201         | 2.7 ×106           | C 42  | 2.7 1.05              | F 42   |
| 10-5              | 35            | 30          | $-2.7 \times 10^6$ | 6.43  | 2.7 x10 <sup>5</sup>  | 5.43   |
| Is Log Nbetwe     | en 6.17 and 6 | .70: Yes    |                    |       |                       |        |
| Is Log No between | een 5.17and 5 | .70: Yes    |                    |       |                       |        |
| Control of wei    | ghted mean co | ounts: 6.32 |                    |       |                       |        |

| Product<br>Concentration | Vc1  | Vc2  | Na (Ave<br>Vc1&Vc2x10) | Log Na | Log Reduction (No: 5.43) |
|--------------------------|------|------|------------------------|--------|--------------------------|
| 25ppm                    | >300 | >300 | >3000                  | >3.48  | <1.95                    |
| 250ppm                   | <15  | <15  | <150                   | <2.18  | >3.25                    |
| 500ppm                   | <15  | <15  | <150                   | <2.18  | >3.25                    |

| Dilutio                                | on                         | Vc1                           |                    | Vc2                        |                        | rage<br>vm)  | Log N           |             | N <sub>0</sub><br>(N/10) | Lo                       | g No    |  |
|----------------------------------------|----------------------------|-------------------------------|--------------------|----------------------------|------------------------|--------------|-----------------|-------------|--------------------------|--------------------------|---------|--|
| 10-4                                   |                            | 210                           |                    | 201                        | 2.7                    | x106         |                 |             | 2.7 x10 <sup>5</sup>     | 5                        | .43     |  |
| 10-5                                   |                            | 35<br>6 17 an                 | d 6.70: <b>Y</b>   | 30                         |                        |              | 0 21.22         |             |                          |                          |         |  |
|                                        |                            |                               | id 5.70: Y         |                            | <u>*</u>               |              |                 |             |                          |                          | 1282    |  |
|                                        |                            |                               | n counts:          |                            |                        |              |                 |             |                          |                          |         |  |
| able 20 Prod                           | uct                        |                               | tion Value         |                            | /c2                    |              | (Ave<br>7c2x10) | Log         | , Na                     |                          | duction |  |
| 25pp                                   |                            | >3                            | 300                | >                          | 300                    |              | 000             | >3          | .48                      | The second second second | .95     |  |
| 250n                                   | ppm                        | <                             | 15                 | <                          | :15                    | <            | 150             | <2          | <2.18                    |                          | >3.25   |  |
| 250p                                   |                            |                               |                    |                            |                        |              |                 |             |                          |                          |         |  |
| 500p ALIDAT able 21                    | TIONS A                    | ND CON                        | ATCC 663           | 33                         | ntal                   |              | 150             |             | .18                      |                          | .25     |  |
| 500p  /ALIDAT                          | ΓΙΟΝS A                    | ND CON s subtilis             | TTROLS ATCC 663    |                            | ntal<br>ntrol A        |              | 150             | ntrol B     |                          | >3                       | ation C |  |
| 500p VALIDAT Table 21 Validati         | FIONS A                    | ND CON                        | ATCC 663           | 33<br>Eperimer<br>tions Co | ntal                   | Neutr        | alizer Con      |             | Metho                    | od Valida                |         |  |
| 500p  ALIDAT  Table 21  Validati  Vc1  | FIONS A : Bacillu ion susp | ND CON as subtilis ension Ave | ATCC 663  Ex Condi | sperimer<br>tions Co       | ntal<br>ntrol A<br>Ave | Neutr<br>Vc1 | ralizer Con     | ntrol B Ave | Metho<br>Vc1             | od Valida                | Ave     |  |
| 500p  ALIDAT  able 21  Validati        | FIONS A : Bacillu ion susp | ND CON as subtilis ension Ave | ATCC 663  Ex Condi | sperimer<br>tions Co       | ntal<br>ntrol A<br>Ave | Neutr<br>Vc1 | ralizer Con     | ntrol B Ave | Metho<br>Vc1             | od Valida                | Ave     |  |
| 500p  /ALIDAT  Table 21  Validati  Vc1 | FIONS A : Bacillu ion susp | ND CON as subtilis ension Ave | ATCC 663  Ex Condi | sperimer<br>tions Co       | ntal<br>ntrol A<br>Ave | Neutr<br>Vc1 | ralizer Con     | ntrol B Ave | Metho<br>Vc1             | od Valida                | Ave     |  |
| 500p  /ALIDAT  Table 21  Validati  Vc1 | FIONS A : Bacillu ion susp | ND CON as subtilis ension Ave | ATCC 663  Ex Condi | sperimer<br>tions Co       | ntal<br>ntrol A<br>Ave | Neutr<br>Vc1 | ralizer Con     | ntrol B Ave | Metho<br>Vc1             | od Valida                | Ave     |  |
| 500p  ALIDAT  Table 21  Validati  Vc1  | FIONS A : Bacillu ion susp | ND CON as subtilis ension Ave | ATCC 663  Ex Condi | sperimer<br>tions Co       | ntal<br>ntrol A<br>Ave | Neutr<br>Vc1 | ralizer Con     | ntrol B Ave | Metho<br>Vc1             | od Valida                | Ave     |  |
| 500p  ALIDAT  Table 21  Validati  Vc1  | FIONS A : Bacillu ion susp | ND CON as subtilis ension Ave | ATCC 663  Ex Condi | sperimer<br>tions Co       | ntal<br>ntrol A<br>Ave | Neutr<br>Vc1 | ralizer Con     | ntrol B Ave | Metho<br>Vc1             | od Valida                | Ave     |  |
| 500p  ALIDAT  able 21  Validati        | FIONS A : Bacillu ion susp | ND CON as subtilis ension Ave | ATCC 663  Ex Condi | sperimer<br>tions Co       | ntal<br>ntrol A<br>Ave | Neutr<br>Vc1 | ralizer Con     | ntrol B Ave | Metho<br>Vc1             | od Valida                | Ave     |  |
| 500p  /ALIDAT  Table 21  Validati  Vc1 | FIONS A : Bacillu ion susp | ND CON as subtilis ension Ave | ATCC 663  Ex Condi | sperimer<br>tions Co       | ntal<br>ntrol A<br>Ave | Neutr<br>Vc1 | ralizer Con     | ntrol B Ave | Metho<br>Vc1             | od Valida                | Ave     |  |
| 500p  ALIDAT  Table 21  Validati  Vc1  | FIONS A : Bacillu ion susp | ND CON as subtilis ension Ave | ATCC 663  Ex Condi | sperimer<br>tions Co       | ntal<br>ntrol A<br>Ave | Neutr<br>Vc1 | ralizer Con     | ntrol B Ave | Metho<br>Vc1             | od Valida                | Ave     |  |
| 500p  ALIDAT  able 21  Validati        | FIONS A : Bacillu ion susp | ND CON as subtilis ension Ave | ATCC 663  Ex Condi | sperimer<br>tions Co       | ntal<br>ntrol A<br>Ave | Neutr<br>Vc1 | ralizer Con     | ntrol B Ave | Metho<br>Vc1             | od Valida                | Ave     |  |
| 500p  ALIDAT  able 21  Validati  Vc1   | FIONS A : Bacillu ion susp | ND CON as subtilis ension Ave | ATCC 663  Ex Condi | sperimer<br>tions Co       | ntal<br>ntrol A<br>Ave | Neutr<br>Vc1 | ralizer Con     | ntrol B Ave | Metho<br>Vc1             | od Valida                | Ave     |  |
| 500p  ALIDAT  able 21  Validati  Vc1   | FIONS A : Bacillu ion susp | ND CON as subtilis ension Ave | ATCC 663  Ex Condi | sperimer<br>tions Co       | ntal<br>ntrol A        | Neutr<br>Vc1 | ralizer Con     | ntrol B Ave | Metho<br>Vc1             | od Valida                | Ave     |  |





M and L Laboratory Services (Pty) Ltd Reg No. 1974/001476/07 VAT No. 478013505

P O Box 82124 Southdale 2135 40 Modulus Road Ormonde, 2091 T: +27 11 661 7900 F: +27 11 496 2238

E: joanne.barton@za.bureauveritas.com

W: www.bureauveritas.com



Issued at: Johannesburg

Ref. No: ML-2022-06248

Date : 26/07/2022

: 11 of 17 Page

# Certificate/Report

RESULTS REPORTED RELATED ONLY TO ITEMS TESTED

**COMPANY NAME** 

: NANOCARE SA

**ADDRESS** 

: 3 HESKETH ROAD, WESTMEAD, PINETOWN, 3610

SUBJECT

: OUANTITATIVE SUSPENSION TEST FOR THE EVALUATION OF

BACTERICIDAL ACTIVITY OF CHEMICAL DISINFECTANTS FOR INSTRUMENTS USED IN THE MEDICAL AREA SANS

53727:2011 (EN13727:2003): DILUTION- NEUTRALIZATION

MARKED

: NANOCARE/NANOPURE EXP 01/05/2025

ACTIVE INGREDIENT

: 51% NaDCC, 0.016% NANOSILVER

**BATCH** 

: 18901

DILUENT RECOMMENDED

: POTABLE WATER

**APPEARANCE** 

: WHITE TABLETS

DILUENT USED

: STANDARDIZED HARD WATER

CONCENTRATIONS TESTED : 25PPM, 250PPM, 500PPM

APPEARANCE OF DILUTIONS: COLOURLESS, HOMOGENOUS, NO PRECIPITATE OBSERVED

NEUTRALIZING AGENT

: NEUTRALIZING FLUID

SOILING CONDITIONS

: PRODUCT NOT TESTED ON SOILED CONDITIONS

STORAGE CONDITIONS

: STORE IN A COOL DRY PLACE, AWAY FROM FOODSTUFFS

INSTRUCTED BY

: SHAUN

LAB NO.

: 949027

RECEIVED ON

: 28/06/2022

DATE ANALYSED

: 29/06/2022

### **EXPERIMENTAL CONDITIONS:**

Obligatory conditions

test organisms:

Enterococcus hirae ATCC 10541

Pseudomonas aeruginosa ATCC 15442

Staphylococcus aureus ATCC 6538

Test temperature:

20°C

Contact time:

60 minutes

Interfering substance:

0.3g/l Bovine serum albumin (Clean conditions)

Test incubation temperature:

37°C

# PASS REQUIREMENTS:

The product shall demonstrate at least a 5 decimal log reduction when diluted with hard water/or undiluted and tested under obligatory test conditions. At least one of the test concentrations will demonstrate a log reduction of less than 5 log.



Re

Ref. No: ML-2022-06248

Date : 26/07/2022

Issued at: Johannesburg

Date Page

: 12 of 17

M and L Laboratory Services (Pty) Ltd Reg No. 1974/001476/07 VAT No. 478013505 P O Box 82124 Southdale, 2135 40 Modulus Road

40 Modulus Road Ormonde, 2091 T: +27 11 661 7900 F: +27 11 496 2238

E: joanne.barton@za.bureauveritas.com

W: www.bureauveritas.com



RESULTS REPORTED RELATED ONLY TO ITEMS TESTED

## TEST VALIDITY

For each test organism:

- N is between  $1.5 \times 10^8$  and  $5.0 \times 10^8$  (8.17  $\leq \log N \leq 8.70$ )
- $N_0$  is between 1.5x10<sup>7</sup> and 5.0x10<sup>7</sup> (7.17 $\leq \log N \leq 7.70$ )
- $N_{VO}$  is between 30 and 160 (3.0x10<sup>1</sup> and 1.6x10<sup>2</sup>)
- A, B, C are equal to or greater than 0.5xN<sub>vo</sub>
- Control of weighted mean counts: quotient is not lower than 5 and not higher than 15

## **RESULTS:**

### Enterococcus hirae ATCC 10541

Table 22: Nand No values

| Dilution          | Vc1           | Vc2         | Average<br>N(wm)     | Log N | N <sub>0</sub> (N/10) | Log No |
|-------------------|---------------|-------------|----------------------|-------|-----------------------|--------|
| 10-6              | 166           | 174         | 0.0-108              | 0.20  | 0.0.107               | 7.00   |
| 10-7              | 25            | 21          | $-2.0 \times 10^{8}$ | 8.30  | 2.0x10 <sup>7</sup>   | 7.30   |
| Is Log Nbetwe     | en 8.17 and 8 | .70: Yes    |                      |       |                       |        |
| Is Log No betwe   | een 7.17and 7 | .70: Yes    |                      |       |                       |        |
| Control of weight | ghted mean co | ounts: 7.39 |                      |       |                       |        |

Table 23: Test Log Reduction Values

| Product<br>Concentration | Vc1  | Vc2  | Na (Ave<br>Vc1&Vc2x10) | Log Na | Log Reduction (No: 7.30) |
|--------------------------|------|------|------------------------|--------|--------------------------|
| 25ppm                    | >330 | >330 | >3300                  | >3.52  | <3.78                    |
| 250ppm                   | <14  | <14  | <140                   | <2.15  | >5.15                    |
| 500ppm                   | <14  | <14  | <140                   | <2.15  | >5.15                    |

### Pseudomonas aeruginosa ATCC 15442

Table 24: Nand No values

| Dilution        | Vc1           | Vc2                | Average<br>N(wm)    | Log N | N <sub>0</sub> (N/10) | Log No |
|-----------------|---------------|--------------------|---------------------|-------|-----------------------|--------|
| 10-6            | 309           | 296                | 2.7-108             | 8.57  | 0.7-107               | 7 57   |
| 10-7            | 42            | 45                 | 3.7x10 <sup>8</sup> | 8.37  | 3.7x10 <sup>7</sup>   | 7.57   |
| Is Log Nbetwe   | en 8.17 and 8 | 3.70: Yes          |                     |       | -                     |        |
| Is Log No betwo | een 7.17and 7 | 7.70: <b>Yes</b>   |                     |       |                       |        |
| Control of wei  | ghted mean co | ounts: <b>6.95</b> |                     |       | - Altimore            |        |





Southdale, 2135 40 Modulus Road Ormonde, 2091 T: +27 11 661 7900 F: +27 11 496 2238

E: joanne.barton@za.bureauveritas.com

W: www.bureauveritas.com



Ref. No: ML-2022-06248

Issued at : Johannesburg

Date : 26/07/2022

Page : 13 of 17

# Certificate/Report

RESULTS REPORTED RELATED ONLY TO ITEMS TESTED

Table 25: Test Log Reduction Values

| Product<br>Concentration | Vc1  | Vc2  | Na (Ave<br>Vc1&Vc2x10) | Log Na | Log Reduction (No:7.57) |
|--------------------------|------|------|------------------------|--------|-------------------------|
| 25ppm                    | >330 | >330 | >3300                  | >3.52  | <4.05                   |
| 250ppm                   | <14  | <14  | <140                   | <2.15  | >5.42                   |
| 500ррт                   | <14  | <14  | <140                   | <2.15  | >5.42                   |

## Staphylococcus aureus ATCC 6538

Table 26: Nand No values

| Dilution         | Vc1            | Vc2               | Average<br>N(wm)      | Log N | N <sub>0</sub> (N/10) | Log No |
|------------------|----------------|-------------------|-----------------------|-------|-----------------------|--------|
| 10-6             | 255            | 264               | 0.0-108               | 0.40  | 0.0107                | 7.40   |
| 10-7             | 24             | 29                | - 2.6x10 <sup>8</sup> | 8.42  | 2.6x10 <sup>7</sup>   | 7.42   |
| Is Log N between | en 8.17 and 8. | 70: <b>Yes</b>    |                       | 100   |                       |        |
| Is Log No betwe  | en 7.17and 7.  | 70: <b>Yes</b>    |                       |       |                       |        |
| Control of weig  | ghted mean co  | unts: <b>9.79</b> |                       |       |                       |        |

Table 27: Test Log Reduction Values

| Product<br>Concentration | Vc1  | Vc2  | Na (Ave<br>Vc1&Vc2x10) | Log Na | Log Reduction (No:7.42) |
|--------------------------|------|------|------------------------|--------|-------------------------|
| 25ppm                    | >330 | >330 | >3300                  | >3.52  | <3.90                   |
| 250ppm                   | <14  | <14  | <140                   | <2.15  | >5.27                   |
| 500ppm                   | <14  | <14  | <140                   | <2.15  | >5.27                   |

## **VALIDATIONS AND CONTROLS**

Table 28: Enterococcus hirae ATCC 10541

| Valida   | tion susp | ension     |            | perimentions Con |                  | Neutra | alizer Co | entrol B | Metho | od Valida | tion C       |
|----------|-----------|------------|------------|------------------|------------------|--------|-----------|----------|-------|-----------|--------------|
|          |           | Ave        |            |                  | Ave              |        |           | Ave      |       |           | Ave          |
| Vc1      | 85        | 00         | Vc1        | 82               | 90               | Vc1    | 74        |          | Vc1   | 65        | 60           |
| Vc2      | 91        | - 88       | Vc2        | 78               | 80               | Vc2    | 77        | 75.5     | Vc2   | 73        | 69           |
| 0.5x88   | =44       |            |            |                  |                  |        |           |          |       |           |              |
| Is the N | vo value  | between    | 30-160:    | YES              |                  |        |           |          |       |           |              |
| Is the E | xperimer  | ntal Cond  | lition A≥0 | 0.5xNvo          | value: YI        | ES     |           |          |       |           |              |
| Is the N | eutralize | er Conditi | on B≥0.5   | SxNvo va         | ılue: <b>YES</b> |        |           |          |       |           |              |
| Is the N | lethod V  | alidation  | C≥0.5xN    | Ivo value        | e: YES           |        |           |          |       |           | ************ |

TECHNICAL SIGNATORY



M and L Laboratory Services (Pty) Ltd Reg No. 1974/001476/07 VAT No. 478013505 P O Box 82124 Southdale 2135 40 Modulus Road

Ormonde, 2091 T: +27 11 661 7900 F: +27 11 496 2238

E: joanne.barton@za.bureauveritas.com

W: www.bureauveritas.com



Certificate/Report

Ref. No: ML-2022-06248

Issued at: Johannesburg

Date : 26/07/2022

Page

: 14 of 17

# Table 29: Staphylococcus aureus ATCC 6538

| Valida   | tion susp | ension    |           | perimentions Con |           | Neutra | alizer Co | ntrol B | Metho | od Valid | ation C |
|----------|-----------|-----------|-----------|------------------|-----------|--------|-----------|---------|-------|----------|---------|
|          |           | Ave       |           |                  | Ave       |        |           | Ave     |       |          | Ave     |
| Vc1      | 112       | 100       | Vc1       | 101              | 00        | Vc1    | 99        | 101     | Vc1   | 92       | 00 F    |
| Vc2      | 106       | 109       | Vc2       | 97               | 99        | Vc2    | 103       | 101     | Vc2   | 85       | 88.5    |
| 0.5x10   | 9=54.5    |           |           |                  |           |        |           |         |       |          |         |
| Is the N | vo value  | between   | 30-160:   | YES              |           |        |           |         |       |          |         |
| Is the E | xperimer  | ital Cond | ition A≥0 | 0.5xNvo          | value: YE | S      |           |         |       |          |         |
| Is the N | eutralize | r Conditi | on B≥0.5  | SxNvo va         | lue: YES  |        | 4         |         |       |          |         |
| Is the N | Iethod Va | alidation | C≥0.5xN   | Ivo value        | : YES     |        |           |         |       |          |         |

Table 30: Pseudomonas aeruginosa ATCC 15442

| -        | tion susp | ension                  |                       | tions Con                                |                  | Neutra    | alizer Co       | ntrol B    | Metho     | od Valid    | ation C  |
|----------|-----------|-------------------------|-----------------------|------------------------------------------|------------------|-----------|-----------------|------------|-----------|-------------|----------|
|          |           | Ave                     |                       |                                          | Ave              |           |                 | Ave        |           |             | Ave      |
| Vc1      | 112       | 109                     | Vc1                   | 101                                      | 99               | Vc1       | 99              | 101        | Vc1       | 92          | 88.5     |
| Vc2      | 106       | 103                     | Vc2                   | 97                                       | 33               | Vc2       | 103             | 101        | Vc2       | 85          | 00.5     |
|          | 9=54.5    |                         |                       |                                          |                  |           |                 |            |           |             |          |
|          | vo value  |                         |                       |                                          |                  |           |                 |            |           |             |          |
|          | -         |                         |                       |                                          | value: <b>YE</b> | S         |                 |            |           |             |          |
|          | eutralize |                         |                       |                                          |                  |           | w cools         |            |           |             |          |
| ls the N | 1ethod Va | alidation               | C≥0.5xN               | Ivo value                                | : YES            |           |                 |            |           |             |          |
|          | 0: Pseudo |                         | E                     | perimen                                  | tal              | Neutr     | alizer Co       | ntrol R    | Meth      | od Valid    | lation C |
| Vallaa   | morr susp | Ave                     | Condi                 | tions Con                                | Ave              | Mount     | anzar co        | Ave        | AVICTI    | ou vano     | Ave      |
| Vc1      | 96        | Ave                     | Vc1                   | 85                                       | Ave              | Vc1       | 84              | Ave        | Vc1       | 61          | AVC      |
|          |           | 99                      |                       |                                          | 89.5             |           |                 | 90         |           |             | - 63     |
| Vc2      | 102       |                         | Vc2                   | 94                                       |                  | Vc2       | 96              |            | Vc2       | 65          |          |
| 0.5x99   |           |                         |                       |                                          |                  |           |                 |            |           |             | 1        |
|          | vo value  |                         |                       | 1010-000-00-00-00-00-00-00-00-00-00-00-0 |                  | 3,000     |                 |            |           | NI WARRANTA |          |
| s the E  | xperimen  | ital Cond               | ition A≥0             | ).5xNvo                                  | value: YE        | S         |                 |            |           |             |          |
| s the N  | eutralize | r Conditi               | on B≥0.5              | xNvo va                                  | lue: YES         |           |                 |            |           |             |          |
| ls the N | lethod Va | alidation               | C≥0.5xN               | vo value                                 | : YES            |           |                 |            |           |             |          |
| Re       | ne produc | nts" of SA<br>999% kill | ANS 5372<br>(5 log re | 27:2011<br>duction)                      |                  | 27:2003)  | standard        | (obligate  | ory condi | tions) w    | hich re  |
|          | ie mean r | .cauciion               | . 01 31X 1C           | pricates v                               |                  |           |                 |            |           |             |          |
| • Th     | ie mean r | D 1                     |                       | granica state and                        | . 1 77 .         | 1         |                 |            |           |             |          |
| • Th     |           | Pseudome                | onas aeru             | <i>iginosa</i> a                         | nd <i>Enterc</i> | ococcus h | <i>irae</i> wer | e tested o | nce and   | showed      | a 5 log  |

### Conclusion



M and L Laboratory Services (Pty) Ltd Reg No. 1974/001476/07 VAT No. 478013505

P O Box 82124 Southdale, 2135 40 Modulus Road Ormonde, 2091 T: +27 11 661 7900 F: +27 11 496 2238

E: joanne.barton@za.bureauveritas.com



Ref. No: ML-2022-06248

Issued at: Johannesburg

: 26/07/2022

Page : 15 of 17

# Certificate/Report

RESULTS REPORTED RELATED ONLY TO ITEMS TESTED

**COMPANY NAME** 

: NANOCARE SA

**ADDRESS** 

W: www.bureauveritas.com

: 3 HESKETH ROAD, WESTMEAD, PINETOWN, 3610

**SUBJECT** 

: QUANTITATIVE SUSPENSION TEST FOR THE EVALUATION OF FUNGICIDAL ACTIVITY OF CHEMICAL DISINFECTANTS FOR

INSTRUMENTS USED IN THE MEDICAL AREA SANS 53624:2011

(EN13624:2003): DILUTION-NEUTRALIZATION METHOD

MARKED

: NANOCARE/NANOPURE EXP 01/05/2025

**BATCH** 

: 18901

ACTIVE INGREDIENT

: 51% NaDCC, 0.016% NANOSILVER

DILUENT RECOMMENDED

: POTABLE WATER

APPEARANCE

: WHITE TABLETS

DILUENT USED

: STANDARDIZED HARD WATER

CONCENTRATIONS TESTED : 25PPM, 250PPM & 500PPM

APPEARANCE OF DILUTIONS: COLOURLESS, HOMOGENOUS, NO PRECIPITATE OBSERVED

NEUTRALIZING AGENT

: NEUTRALIZING FLUID

SOILING CONDITIONS

: PRODUCT NOT TESTED ON SOILED CONDITIONS

STORAGE CONDITIONS

: STORE IN A COOL DRY PLACE, AWAY FROM FOODSTUFFS

INSTRUCTED BY

: SHAUN

LAB NO.

: 949027

RECEIVED ON

: 28/06/2022

DATE ANALYSED

: 29/06/2022

### **EXPERIMENTAL CONDITIONS:**

Obligatory conditions

test organisms:

Candida albicans ATCC 10231

Aspergillus brasiliensis ATCC 16404

Test temperature:

20°C

Contact time:

60 minutes

Interfering substance:

0.3g/l Bovine serum albumin (Clean conditions)

Test incubation temperature:

30°C

# **PASS REQUIREMENTS:**

The product shall demonstrate at least a 4 decimal log reduction when diluted with hard water/or undiluted and tested under obligatory test conditions. At least one of the test concentrations will demonstrate a log reduction of less than 4 log.



Southdale, 2135 40 Modulus Road Ormonde, 2091 T: +27 11 661 7900 F: +27 11 496 2238

E: joanne.barton@za.bureauveritas.com

W: www.bureauveritas.com



Issued at : Johannesburg

Ref. No: ML-2022-06248

Date : 26/07/2022

Page : 16 of 17

# Certificate/Report

RESULTS REPORTED RELATED ONLY TO ITEMS TESTED

### **TEST VALIDITY**

For each test organism:

- *N* is between  $1.5 \times 10^7$  and  $5.0 \times 10^7$  ( $7.17 \le \log N \le 7.70$ )
- $N_0$  is between 1.5x10<sup>6</sup> and 5.0x10<sup>6</sup> (6.17 $\le$ log N $\le$ 6.70)
- $N_{VO}$  is between 30 and 160 (3.0x10<sup>1</sup> and 1.6x10<sup>2</sup>)
- A, B, C are equal to or greater than 0.5xN<sub>vo</sub>
- Control of weighted mean counts: quotient is not lower than 5 and not higher than 15

### **RESULTS:**

### Candida albicans ATCC 10231

Table 31: Nand No values

| Dilution          | Vc1            | Vc2              | Average<br>N(wm)      | Log N | N <sub>0</sub> (N/10) | Log No |
|-------------------|----------------|------------------|-----------------------|-------|-----------------------|--------|
| 10-5              | 226            | 232              | 0.4107                | 7.00  | 0.4-106               | 0.00   |
| 10-6              | 24             | 26               | - 2.4x10 <sup>7</sup> | 7.38  | 2.4x10 <sup>6</sup>   | 6.38   |
| Is Log N between  | een 7.17 and 7 | 7.70: <b>Yes</b> | -                     |       |                       |        |
| Is Log No betwe   | een 6.17and 6  | .70: <b>Yes</b>  |                       |       |                       |        |
| Control of weight | ghted mean co  | ounts: 9.16      |                       |       |                       |        |

### Table 32: Test Log Reduction Values

| Product<br>Concentration | Vc1  | Vc2  | Na (Ave<br>Vc1&Vc2x10) | Log Na | Log Reduction (No: 6.38) |
|--------------------------|------|------|------------------------|--------|--------------------------|
| 25ppm                    | >330 | >330 | >3300                  | >3.52  | <2.86                    |
| 250ppm                   | <14  | <14  | <140                   | <2.15  | >4.23                    |
| 500ppm                   | <14  | <14  | <140                   | <2.15  | >4.23                    |

# Aspergillus brasiliensis ATCC 16404

Table 33: Nand No values

| Dilution          | Vc1           | Vc2             | Average<br>N(wm)      | Log N | N <sub>0</sub> (N/10) | Log No |
|-------------------|---------------|-----------------|-----------------------|-------|-----------------------|--------|
| 10-5              | 144           | 139             | 0.0-107               | 7.20  | 0.0106                | 0.20   |
| 10-6              | 24            | 29              | - 2.0x10 <sup>7</sup> | 7.30  | 2.0x10 <sup>6</sup>   | 6.30   |
| Is Log Nbetwe     | en 7.17 and 7 | .70: Yes        |                       |       |                       | · ·    |
| Is Log No betwe   | een 6.17and 6 | .70: <b>Yes</b> |                       |       |                       |        |
| Control of weight | ghted mean co | unts: 5.34      |                       |       |                       |        |



LA

All services are rendered in accordance with Bureau Veritas M&L Laboratory Services (Pty) Ltd General Terms and conditions of Business, which has been supplied to you, this certificate cannot be reproduced except in full without the written consent of M and L Laboratory Services.

Southdale 2135 40 Modulus Road Ormonde, 2091 T: +27 11 661 7900 F: +27 11 496 2238

E: joanne.barton@za.bureauveritas.com

W: www.bureauveritas.com



Issued at: Johannesburg

Ref. No: ML-2022-06248

: 26/07/2022 Date

Page : 17 of 17

# Certificate/Report

Table 34: Test Log Reduction Values

| Product<br>Concentration | Vc1  | Vc2  | Na (Ave<br>Vc1&Vc2x10) | Log Na | Log Reduction (No: 6.30) |
|--------------------------|------|------|------------------------|--------|--------------------------|
| 25ppm                    | >165 | >165 | >1650                  | >3.22  | <3.08                    |
| 250ppm                   | <14  | <14  | <140                   | <2.15  | >4.15                    |
| 500ppm                   | <14  | <14  | <140                   | <2.15  | >4.15                    |

### **VALIDATIONS AND CONTROLS**

Table 35: Candida albicans ATCC 10231

| Valida    | tion susp | ension     |          | perimentions Co |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Neutra | alizer Co | entrol B | Metho  | od Valida | ation C             |
|-----------|-----------|------------|----------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|----------|--------|-----------|---------------------|
|           |           | Ave        |          |                 | Ave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |           | Ave      |        |           | Ave                 |
| Vc1       | 78        | 00         | Vc1      | 76              | 72.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Vc1    | 64        | CCF      | Vc1    | 62        | C4                  |
| Vc2       | 86        | 82         | Vc2      | 69              | 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Vc2    | 69        | 66.5     | Vc2    | 66        | 64                  |
| 0.5x82=   | =41       |            |          |                 | The state of the s |        |           |          |        | 1         |                     |
| Is the N  | vo value  | between    | 30-160:  | YES             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |          |        |           | <del>1.72-1</del> 0 |
| Is the Ex | perimen   | ıtal Condi | tion A≥0 | .5xNvo          | value: YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3      |           |          | 1/ 1/2 | 15.00     |                     |
| Is the No | eutralize | r Conditio | on B≥0.5 | xNvo va         | lue: YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |           |          |        |           |                     |

Table 36: Aspergillus brasiliensis ATCC 16404

| Product<br>Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7c1                                             | V                                           | rc2                              | Na (Ave<br>Vc1&Vc2x10                   | Log           | 3 Na       |           | duction<br>6.30) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------|----------------------------------|-----------------------------------------|---------------|------------|-----------|------------------|
| 25ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 165                                             |                                             | 165                              | >1650                                   | >3            | 3.22       |           | .08              |
| 250ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14                                              |                                             | 14                               | <140                                    |               | .15        |           | .15              |
| 500ppm  /ALIDATIONS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TROLS                                           |                                             | 14                               | <140                                    |               | 2.15       |           | .15              |
| Table 35: Candid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 10231                                       | ıtal                             | Neutralizer                             | Control P     | Math       | od Valida | tian C           |
| Validation susp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Condi                                           | tions Co                                    | T                                | Neutranzer                              |               | Meth       | oa vanaz  |                  |
| Val 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17-1                                            | 7.0                                         | Ave                              | Val 04                                  | Ave           | 17 - 4     | 0.0       | Ave              |
| Vc1         78           Vc2         86           0.5x82=41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Vc1<br>Vc2                                      | 76<br>69                                    | 72.5                             | Vc1         64           Vc2         69 | 66.5          | Vc1<br>Vc2 | 62<br>66  | 64               |
| J.UKU4-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                             |                                  |                                         |               |            |           |                  |
| s the Nyo value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | hetween                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30~160:                                         | VES                                         |                                  |                                         |               |            |           |                  |
| s the Nvo value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                             | value: <b>YE</b> S               | 3                                       |               | 1000       |           | 75-10-           |
| Is the Nvo value Is the Experiment Is the Neutralize                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tal Cond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ition A≥0                                       | .5xNvo v                                    |                                  | 3                                       |               |            |           |                  |
| s the Experimen<br>s the Neutralize                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tal Cond<br>r Conditi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ition A≥0<br>on B≥0.5                           | .5xNvo val                                  | lue: <b>YES</b>                  | 3                                       |               |            |           |                  |
| Is the Experimen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tal Cond<br>r Conditi<br>llidation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ition A≥0<br>on B≥0.5<br>C≥0.5xN<br>siliensis A | 2.5xNvo val<br>xNvo value:                  | lue: YES : YES                   | Neutralizer (                           | Control B     | Meth       | od Valida | tion C           |
| Is the Experiments the Neutralize is the Method Value Is the Metho | tal Cond<br>r Conditi<br>llidation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ition A≥0<br>on B≥0.5<br>C≥0.5xN<br>siliensis A | 2.5xNvo vaxNvo value: TCC 164               | lue: YES : YES                   |                                         | Control B Ave | Meth       | od Valida | tion C           |
| Is the Experiment Is the Neutralize Is the Method Validation Suspension Validation Valid | tal Condition co | ition A≥0 on B≥0.5 C≥0.5xN  siliensis A  Condi  | 2.5xNvo value:  TCC 164  Experimentions Con | iue: YES : YES : YES : VES : Ave | Neutralizer (                           | Ave           | Vc1        | 50        | Ave              |
| s the Experiments the Neutralizes the Method Validation susp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tal Condition co | ition A≥0 on B≥0.5 C≥0.5xN  siliensis A  Condi  | 2.5xNvo value:  TCC 164  Experimentions Con | iue: YES : YES : YES : VES : Ave | Neutralizer (                           | Ave           | Vc1        | 50        | Ave              |
| s the Experiments the Neutralize s the Method Validation suspection with the State of the State of the Experiments of the Neutralization suspection is the Experiment of the Neutralization suspection of the Experiment of the Neutralization suspection of the Experiment of the Neutralization of the Neutralization of the Experiment of the Neutralization  | tal Condition co | ition A≥0 on B≥0.5 C≥0.5xN  siliensis A  Condi  | 2.5xNvo value:  TCC 164  Experimentions Con | iue: YES : YES : YES : VES : Ave | Neutralizer (                           | Ave           | Vc1        | 50        | Ave              |
| Is the Experiment Is the Neutralize Is the Method Validation Suspension Validation Valid | tal Condition co | ition A≥0 on B≥0.5 C≥0.5xN  siliensis A  Condi  | 2.5xNvo value:  TCC 164  Experimentions Con | iue: YES : YES : YES : VES : Ave | Neutralizer (                           | Ave           | Vc1        | 50        | Ave              |
| s the Experiments the Neutralize is the Method Valable 36: Aspergardal Validation susp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tal Condition co | ition A≥0 on B≥0.5 C≥0.5xN  siliensis A  Condi  | 2.5xNvo value:  TCC 164  Experimentions Con | iue: YES : YES : YES : VES : Ave | Neutralizer (                           | Ave           | Vc1        | 50        | Ave              |
| the Experiment the Neutralize the Method Valable 36: Asperg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tal Condition co | ition A≥0 on B≥0.5 C≥0.5xN  siliensis A  Condi  | 2.5xNvo value:  TCC 164  Experimentions Con | iue: YES : YES : YES : VES : Ave | Neutralizer (                           | Ave           | Vc1        | 50        | Ave              |
| Is the Experiment Is the Neutralize Is the Method Validation Suspension Validation Valid | tal Condition co | ition A≥0 on B≥0.5 C≥0.5xN  siliensis A  Condi  | 2.5xNvo value:  TCC 164  Experimentions Con | iue: YES : YES : YES : VES : Ave | Neutralizer (                           | Ave           | Vc1        | 50        | Ave              |
| Is the Experiment Is the Neutralize Is the Method Validation Suspension Validation Valid | tal Condition co | ition A≥0 on B≥0.5 C≥0.5xN  siliensis A  Condi  | 2.5xNvo value:  TCC 164  Experimentions Con | iue: YES : YES : YES : VES : Ave | Neutralizer (Vc1 61 Vc2 65              | Ave           | Vc1        | 50        | Ave              |

# Conclusion

- least a 99.99% kill (4 log reduction).
- The mean reduction of six replicates with the limiting test organism *Aspergillus brasiliensis* was 1.9x10<sup>4</sup>. Candida albicans was tested once and showed a 4 log reduction at a lower concentration than Aspergillus brasiliensis.

